Why aluminum coolant systems and nitrited coolants don’t mix

A few years ago, OEMs introduced aluminum radiators and engine coolant systems manufactured with the Controlled Atmosphere Brazing (CAB) process.

The problem?

Coolant technology hasn’t kept pace with modern manufacturing. And it could be keeping coolant systems from doing their job.

Inside the CAB process

Aluminum radiators and engine coolant systems are lighter and less expensive than the old copper versions. But as with any new standard, new challenges can be presented.

In the CAB process, the aluminum to be joined is treated with a chemical cleaning agent (flux) to prepare it for brazing. The aluminum outside the radiator becomes oxidized (passivated) by the air, giving it a natural protective coating. The inside aluminum treated with flux remains un-passivated and unprotected.

Nitrites pose a problem

Coolants, especially those with nitrites, tend to react with un-passivated aluminum, causing two things to happen:

- Precipitants form that clog small orifices in the coolant system
- The coolant’s pH balance gets thrown off, causing it to break down

What this means for machinery

This adverse reaction between un-passivated aluminum and nitrited coolants can lead to costly machinery and business-related challenges.

- Increased coolant consumption
- Engine failure
- pH imbalance
- Increased operating costs
- Unplanned downtimes
- Repair costs
- Increased operating costs
- Unplanned downtimes
- Repair costs

Get protection with purpose

Introducing Delo® ELC Advanced, next-gen coolant built for modern aluminum engine systems.

LEARN MORE

Think a colleague would find this interesting? Download and share this infographic.

© 2019 Chevron. All rights reserved. All trademarks are property of Chevron Intellectual Property LLC or their respective owners.