How much ash is too much and how much is not enough?

Additional considerations of low load on engines

Additional considerations
 of high load on engines

Ashless oil

- Low intake manifold pressure/vacuum may pull additional oil past valve guides and piston rings resulting in
- Increased combustion chamber deposits
- Increased oil consumption
- Small naturally aspirated (non-turbocharged) engines may use valve guide seals to reduce oil coming past the valve guide

Low ash oil

- Some small engines running at reduced load can benefit from ashless oil use although this is against the recommendation of some OEMs.

- When operated at high loads the intake manifold pressure is positive pushing oi up the guide.
Intake and combustion pressures are also higher helping to push piston rings against the liner for a tighter seal.
- Higher combustion pressures push the valves harder against the seat which can accelerate wear if the ash cushion is absent.
- Engine temperature is also often higher which helps flash off moisture from the oil sump.
,
th
- Throttle restriction
- Elevated temperatures may increase oil degradation for faster oxidation, nitration and liner lacquering.
- Low ash oils work better in these conditions with better base number retention, detergency to prevent deposits and valve cushioning.

- High load

- High turbo boost - No throttle restriction - High manifold pressure - Pushes oil u-pin valve guide - Very little oil or ash at valve face

